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Effect of Retarding Force

F = mx

We should emphasize that the force is not necessarily constant, and indeed, it may
consist of several distinct parts.

F is not constant

For example, if a particle falls in a constant gravitational field, the gravitational
force is F, = mg, where g is the acceleration of gravity. If, in addition, a retarding
force F, exists that is some function of the instantaneous speed, then the total
force is

F=Fg+F_(v)

F=mg+ F (v)
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Example 4:

As the simplest example of the resisted motion of a particle, find the displacement
and velocity of horizontal motion in a medium in which the retarding force is
proportional to the velocity.

~— Resisting force F = kmv

x-direction

dv
ma = m—

dt
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The integration constant in Equation 2.23 can be evaluated if we prescribe the
initial condition v(¢ = 0) = v, The C; = In vy, and

v = yye kt ' (2.24)

We can integrate this equation to obtain the displacement x as a function of
time:

d
UV= _{: == er—kt
dt
v
X = yp fe‘k‘dt = —-fe_k‘ + C, (2.25a)

The initial condition x(¢ = 0) = 0 implies Cy = vy/k. Therefore

x = fkﬂ(l — ek (2.25b)



We can obtain the velocity as a function of displacement by writing :

dv dvdt p— l
dx _ dt dx [Chain rule]
__dv dx locit
=7 [as Fri velocity |
So that
v=p. e Kt
dv dv dv
_ _ —kt
V —=— » V —=—KvVD-e
dx dt dx
\ dv h X
— =—k » =—k | dx
\dx \ 0

vV=v. — kx

Therefore, the velocity decreases linearly with displacement:



Example 5&Terminal Velocity see
Pdf file:

hoy vj’

‘ Gravitational force = mg

1 Resisting force = kmv




Example 6:

Consider projectile motion in two dimensions, without considering air
resistance. Let the muzzle velocity of the projectile be v, and the angle of
elevation be (6 (Figure 2-7). Calculate the projectile's displacement,

velocity, and range

——

Solution. Using F = mg, the force components become

x-direction 0 = mx

y-direction —-mg = my



—— -

Neglect the height of the gun, and assume x=y=0att=0. Then

¥y=10 j;_-g

3= —gt+ y;sin 6

X = ygcosb :

+ vyt sin 6

x = yyt cos 8 Y=y

The speed and total displacement as functions of time are found to be
v=Vi?+ j2 = (v] + g2 — 2v,gt sin )2

and

gﬂgﬂ 1/2
r= \Vx?+ },‘2 = (vﬁt? + T - vﬁgt?’sinﬂ



We can find the range by determining the value of x when the projectile falls
back to ground, thatis, when y = 0.

& .
y =t 5 + vysinf | =0 (2.36)
One value of y = 0 occurs for t = 0 and the other one for t= T.

—2T
§—+yﬂsina=0

s 2vg sin 0 (2.37)
g



The range R is found from

208,
x(t = T) = range = —g sin @ cos (2.38)
v% -
R = range = r sin 20 (2.39)

Notice that the maximum range occurs for 8 = 45°.

Let us use some actual numbers in these calculations. The Germans used a
long-range gun named Big Bertha in World War I to bombard Paris. Its muzzle
velocity was 1,450 m/s. Find its predicted range, maximum projectile height,
and projectile time of flight if # = 55°. We have v, = 1450 m/s and 6 = 55°, so
the range (from Equation 2.39) becomes

B = (1450 m/s)?
9.8 m/s?
Big Bertha’s actual range was 120 km. The difference is a result of the real
effect of air resistance.

To find the maximum predicted height, we need to calculated y for the
time 7/2 where T'is the projectile time of flight:

[sin(110°)] = 202 km

(2) (1450 m/s) (sin 55°)
T= i
9.8 m/s? ades
T —gT? 3T |
e — +
}?max(f 9 3 5 sin 8
_ —(9.8 m/s) (242 )2 N (1450 m/s) (242 s) sin(55°)
8 2
= 72 km
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Example 7:

Next, we add the effect of air resistance to the motion of the projectile in
the previous example. Calculate the decrease in range under the
assumption that the force caused by air resistance is directly proportional
to the projectile's velocity.

-

=Y}~~~ Teeal
Solution. 'The initial conditions are the same as in the previous example.

x(t=0) =0=9y(t=0)
x(t=0) = yycos8 = U (2.40)
y(t=0) = ysinf =YV

However, the equations of motion, Equation 2.31, become

X = 1kmx 4
= A, Air Resistance i

my = -|kmy |- mg (2.42)

Equation 2.41 is exactly that used in Example 2.4. The solution 1s therefore

. = %1 — ok (2.43)



Similarly , we can findy by letting h=0
HW

gt kV+ g
Y=ot T
k k
The trajectory is shown in Figure 2-8 for several values of the retarding force
constant k for a given projectile flight.

(1 — ¢ k1) (2.44)
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FIGURE 28 The calculated trajectories of a particle in air resistance (F,., = —kmv)
for various values of k (in units of s71). The calculations were performed
for values of 8 = 60° and v, = 600 m/s. The values of y (Equation 2.44) 12
are plotted versus x (Equation 2.43).



The range R', which is the range including air resistance, can be found as previously by
calculating the time T required for the entire trajectory and then substituting this value

into Equation for x. The time T is found as previously by finding t = T when y = 0. From,
we find

EV + g kg
T:—-—g(1—e—hT) Y= TR T TR

(1 — e k%)

This is a trans
for T. Noneth
equation , w

ndental equation, and therefore we cannot obtain an analytic expression

ss, we still have powerful methods to use to solve . To solve this
eed to follow the perturbation method.

x? x3 — X"
e* =1 s o + 3 s = Pl mm)p- Expand the expenetial term
! ! ~ 1!
and (14 x) T=1+x+tx2+x3+... == Taylar Sereis
RV + g 1
T= kT — —k2T2 + —k3T% — -
gk 6
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RV +
T = g(kT__leTQ_I__l_kSTSm )
gk 2 6

If we keep only terms in the expansion through k3, this equation can be rearranged to yield

l Return to pdf file

2V, 1
r=—2V8 ,Lip

a + kV/g) 3

We now have the expansion parameter kin the denominator of the first term on the right-
hand side of this equation. We need to expand this term in a power series (Taylor series,

1
1 + kV/g

=1 - (kV/D) + (RV/? — -

where we have kept only terms through k2

2 2
r=2", (T _ QV)H O(k2)
g 3 g
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g L& g

2 2
T:_g/+(7“ —QV)k+ O(k?)

where we choose to neglect O(k?), the terms of order k% and higher. In the limit
k — 0 (no air resistance), Equation 2.49 gives us the same result as in the previ-
ous example:

Th=0)= T, = —
"og

g

QV“ Q'UO Slﬂ_g

Therefore, if £ is small (but nonvanishing), the flight time will be approximately
equal to T;. If we then use this approximate value for 7= 7j in the right-hand
side of Equation 2.49, we have

Next, we write the equation for x (Equation 2.43) in expanded form:

I

T = ﬁ”(l--’?l”)
g 3g

x:

U

k 2

6
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Because x(¢{ = T) = R’, we have approximately for the range

1 U 1 1
! — s 2 — S p = - i
R = U(l"gki ) xfk(kt 2k212+6k3t3

where again we keep terms only through the first order of & We can now evalu-
ate this expression by using the value of T from Equation 2.50. If we retain only

terms linear in k, we find
Uv
R = et (l — ﬂ) (2.53)

The quantity 2UV/g can now be written (using Equations 2.40) as

UV 2u2 :
= 200 e saedy = 9 b 00w B (2.54)
g g g

which will be recognized as the range R of the projectile when air resistance is

neglected. Therefore
4kV
s - )
3g
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